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Phase And Gain Response Of A Closed-Loop-Controlled High Voltage  
DC-DC Converter At Cryogenic Temperatures 

 
Background 
 
The phase and gain response of a 1 kW, 80-110V/500V closed-loop-controlled high voltage full-
bridge dc-dc converter was evaluated at room temperature and at various temperatures down to 
-185 °C.  The converter design was based on that of a beam power supply for a space electric 
propulsion system [1], with the added capability of being able to operate over a very wide low 
temperature range.   The schematic of the full-bridge dc-dc converter is shown in Figure 1 and its 
control circuit is shown in Figure 2.  This cryogenic beam supply was previously tested in terms 
of efficiency, output voltage regulation, switching behavior and transient load testing [2,3].   
Recent availability of a Venable Frequency Response System has made phase and gain response 
testing of the supply a reality. 
 
Test Setup 
 
Testing of the cryogenic beam supply was performed in a liquid nitrogen cooled chamber 
manufactured by SUN Systems.  A Venable Frequency Response System was used to measure 
phase and gain response over a frequency range of 10 Hz to 1 MHz.  Response measurements 
were recorded at chamber temperatures of 25 °C, -55 °C, -100 °C, -150 °C and –185 °C.  Due to 
limited availability of the frequency response system, initial testing was limited to a single 
operating point of 100V input voltage, 500V output voltage and a 600Ω load (half load ≈ 415W).   
 
Results and Discussion 
 
The closed-loop controller as shown in Figure 2 was constructed from metal film resistors, solid 
tantalum, npo ceramic and mica capacitors, as well as, CMOS (timer, logic and operational 
amplifier) devices.  The controller utilized a Type I compensation network as defined in [4].  
Previous testing utilized a 0.01µF compensation capacitor.  After first cut response 
measurements showed a phase margin of approximately 45º and a gain margin of 14 dB at 25°C, 
additional compensation was added by utilizing a 0.02µF compensation capacitor.  Response 
measurements for this configuration showed a phase margin of approximately 60º and a gain 
margin of 30 dB at 25 °C.  Table 1 lists the measured phase and gain margins of the controller at 
each test temperature.  As temperature was decreased to -100 °C both phase and gain margins 
were reduced to their minimum values of 45° and 16 dB, respectively.  As temperature was 
furthered decreased down to -185 °C the phase and gain margins returned to values close to 
those obtained at 25 °C. At all temperatures the controller maintains adequate phase and gain 
margins for controller stability.   
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Table 1. Measured phase and gain margins of the controller at various test temperatures. 
 

Temperature 
(°C) 

Phase Margin (°) Gain Margin 
(dB) 

25 60 30 
-55 60 27 

-100 45 16 
-150 48 17 
-185 53 35 

 
The phase and gain vs. frequency plots for the controller at test temperatures of 25 °C and 
-185 °C are shown in Figures 3 and 4, respectively. 
 
Conclusion 
 
A 1 kW 80-110V/550V closed-loop controlled full-bridge dc-dc converter, designed to operate 
from 25 °C to -185 °C using commercially available components, was evaluated in terms of its 
frequency response over the same temperature range.  Testing was performed at a single nominal 
operating point of 100V input voltage, 500V output voltage and a 600Ω load (half load ≈ 415W).  
Phase and gain response measurements were made over a frequency range of 10 Hz to 1 MHz.  
The converter’s phase margin varied from a maximum of 60° at 25 °C to a minimum of 45° at 
-100 °C and the gain margin varied from a maximum of 35 dB at -185 °C to a minimum of 16 
dB at -100 °C.   Measured phase and gain margins at -185 °C were similar to those measured at 
25 °C.  At all temperatures the controller maintains adequate phase and gain margins for 
controller stability.  The results from this work indicate that control circuits can be designed and 
operated at very low temperatures well beyond normal operating temperatures.   
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Figure 1.  Full-Bridge DC-DC Cryogenic Beam Supply. 
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Figure 2.  Closed-loop controller. 
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Figure 3.  Phase and gain response vs. frequency of the controller at 25 °C. 
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Figure 4.  Phase and gain response vs. frequency of the controller at -185 °C. 
 


